

MUTAH UNIVERSITY Faculty of Engineering Department of Electrical Engineering Course Syllabus Study Plan 2021: Power and Control Track

Course Code	Course Name	Credits	Contact Hours
0401231	Electronic Circuits and Devices lab	1	2 T

INSTRUCTOR/COORDINATOR			
Name	Dr. Ziyad Al Tarawneh		
Email	zdtarawneh@mutah.edu.jo		
Office Hours	14:00-16:00 (Mon)		
Classroom Time	11:00-12:00 (Sun, Tues, Thur)		

TEXTBOOK			
Title	Laboratory Manual for Electronic Devices and Circuits		
Author/Year/Edition			
Other Supplemental Materials			
Title	Electronic Devices and Circuit Theory		
Author/Year/Edition	Robert Boylestad,11thedition		

SPECIFIC COURSE INFORMATION

A. Brief Description of the Content of the Course (Catalog Description)

This lab aims to provide students with information about: Diode and Zener Diode Characteristics, Rectifiers, Clipping and clamping circuits, BJT Characteristics, the Common Emitter Amplifier, the Common Collector Amplifier, the Common base Amplifier, N-Channel JFET Characteristics, Common Source JFET Amplifier, Common Drain JFET Amplifier Operational Amplifier Inverting and non-inverting configurations. Integrator and Differentiator. op-amp applications.

B. Pre-requisites (P) or Co-requisites (C)

Electronic Circuits and Devices (0401230) (C) Electric Circuits & Filters Lab (0401219) (P)

C. Course Type (Required or Elective)

Required

SPECIFIC GOALS

A. Course Learning Outcomes (CLOs)

By the end of this course, the student should be able to:

By the end of this course, the student should be able to:

<u>CLO1</u>: Learn how to build different electronic circuits such as rectifier circuit, clamper, and clipper circuits, BJT and FET amplifiers and different op_amp circuits[6].

<u>CLO2</u>: Connecting the laboratory with the theoretical material and proving the results of mathematical equations [6].

<u>CLO3</u>: Work effectively in groups (teamwork) by sharing discuss and analyze the results [5].

B. Student Learning Outcomes (SLOs) Addressed by the Course						
1	2	3	4	5	6	7
				✓	✓	

BRIEF LIST OF TOPICS TO BE COVERED			
List of Topics	No. of Weeks	Contact Hours	
Experiment 1: Introduction about our lab		2	
Experiment2: Diode and Zener Diode Characteristics	2	4	
Experiment3: Half wave and Full Rectifiers	2	4	
Experiment4: Clipping and clamping circuits	1	2	
Experiment5: BJT Characteristics	1	2	
Experiment6: Common Emitter Amplifier	2	4	
Experiment7: JFET Characteristics	1	2	
Experiment8: Common Source JFET Amplifier	1	2	
Experiment9: Operational Amplifier Inverting and non inverting configurations.	1	2	
Experiment10: Integrator and Differentiator.		2	
Experiment11: Operational Amplifier Application.		2	
Total	14	28	

EVALUATION		
Assessment Tool	Due Date	Weight (%)
Mid Exam	According to the university calendar	20
Lab Reports	One week after being taken	40

Final Exam		n	According to the university calendar	40	
	ABET's Students Learning Outcomes (Criterion # 3)				
	Relationship to program outcomes				
ABET 1-7	Engineering Student Outcomes				
1		an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics			
2		an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.			
3		an ability to communicate effectively with a range of audiences.			
4		an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.			
5		an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.			
6	V	an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.			
7		an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.			